首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28041篇
  免费   320篇
  国内免费   922篇
测绘学   1553篇
大气科学   2509篇
地球物理   5367篇
地质学   13082篇
海洋学   1155篇
天文学   2114篇
综合类   2167篇
自然地理   1336篇
  2021年   62篇
  2020年   57篇
  2019年   38篇
  2018年   4824篇
  2017年   4120篇
  2016年   2760篇
  2015年   357篇
  2014年   269篇
  2013年   261篇
  2012年   1066篇
  2011年   2831篇
  2010年   2152篇
  2009年   2448篇
  2008年   2003篇
  2007年   2424篇
  2006年   153篇
  2005年   271篇
  2004年   452篇
  2003年   465篇
  2002年   327篇
  2001年   123篇
  2000年   116篇
  1999年   79篇
  1998年   90篇
  1997年   61篇
  1996年   52篇
  1995年   63篇
  1994年   72篇
  1993年   32篇
  1992年   34篇
  1991年   32篇
  1990年   41篇
  1989年   37篇
  1988年   29篇
  1987年   33篇
  1985年   45篇
  1984年   44篇
  1983年   53篇
  1982年   41篇
  1981年   61篇
  1980年   56篇
  1979年   32篇
  1978年   55篇
  1977年   31篇
  1976年   39篇
  1975年   44篇
  1974年   51篇
  1973年   48篇
  1969年   25篇
  1968年   25篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
101.
This paper presents a dendroclimatic analysis of Siberian larch trees sampled along a latitudinal 260-km transect located in the Polar Urals,Russia. Three standardised chronologies were built over a length of 230–293 years using 79 individual tree-ring chronologies collected in the southern,middle and northern parts of the Polar Urals.Bootstrapped correlation functions showed that the annual growth of the larches was mainly influenced by the air temperatures in June and July. The relative role of the temperatures increased from south to north. Daily air temperature data analysis revealed that the duration of the growing season in the northern part of the Polar Urals is 24 days less than that in the southern part. At the present time, air temperatures exceeded threshold of 8~℃, 5 days earlier than it did in the beginning of the 20 th century In response to the increase in the duration of the growing season and the changing winter conditions in the Polar Urals over the last 130 years, radial growth–temperature relationships in larches have weakened;this effect was strongly pronounced in the southern part of the Polar Urals.  相似文献   
102.
Remote sensing data have been widely applied to extract minerals in geologic exploration, however, in areas covered by vegetation, extracted mineral information has mostly been small targets bearing little information. In this paper, we present a new method for mineral extraction aimed at solving the difficulty of mineral identification in vegetation covered areas. The method selected six sets of spectral difference coupling between soil and plant (SVSCD). These sets have the same vegetation spectra reflectance and a maximum different reflectance of soil and mineral spectra from Hyperion image based on spectral reflectance characteristics of measured spectra. The central wavelengths of the six, selected band pairs were 2314 and 701 nm, 1699 and 721 nm, 1336 and 742 nm, 2203 and 681 nm, 2183 and 671 nm, and 2072 and 548 nm. Each data set’s reflectance was used to calculate the difference value. After band difference calculation, vegetation information was suppressed and mineral abnormal information was enhanced compared to the scatter plot of original band. Six spectral difference couplings, after vegetation inhibition, were arranged in a new data set that requires two components that have the largest eigenvalue difference from principal component analysis (PCA). The spatial geometric structure features of PC1 and PC2 was used to identify altered minerals by spectral feature fitting (SFF). The collecting rocks from the 10 points that were selected in the concentration of mineral extraction were analyzed under a high-resolution microscope to identify metal minerals and nonmetallic minerals. Results indicated that the extracted minerals were well matched with the verified samples, especially with the sample 2, 4, 5 and 8. It demonstrated that the method can effectively detect altered minerals in vegetation covered area in Hyperion image.  相似文献   
103.
The kinetic Alfven waves in the presence of homogeneous magnetic field plasma with multi-ions effect are investigated. The dispersion relation and normalised damping rate are derived for low-\(\beta\) plasma using kinetic theory. The effect of density variation of \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions is observed on frequency and damping rate of the wave. The variation of frequency (\(\omega\)) and normalised damping rate (\(\gamma / \varOmega_{H^{ +}} \)) of the wave are studied with respect to \(k_{ \bot} \rho_{j}\), where \(k_{ \bot} \) is the perpendicular wave number, \(\rho_{j}\) is the ion gyroradius and \(j \) denotes \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions. The variation with \(k_{ \bot} \rho_{j}\) is considered over wide range. The parameters appropriate to cusp region are used for the explanation of results. It is found that with hydrogen and helium ions gyration, the frequency of wave is influenced by the density variation of \(\text{H}^{+}\) and \(\text{He}^{+}\) ions but remains insensitive to the change in density of \(\text{O}^{+}\) ions. For oxygen ion gyration, the frequency of wave varies over a short range only for \(\text{O}^{+}\) ion density variation. The wave shows damping at lower altitude due to variation in density of lighter \(\text{H}^{+}\) and \(\text{He}^{+}\) ions whereas at higher altitude only heavy \(\text{O}^{+}\) ions contribute in wave damping. The damping of wave may be due to landau damping or energy transfer from wave to particles. The present study signifies that the both lighter and heavier ions dominate differently to change the characteristics of kinetic Alfven wave and density variation is also an important parameter to understand wave phenomena in cusp region.  相似文献   
104.
To understand the physics of sunspots, it is important to know the properties of their magnetic field, and especially its height stratification plays a substantial role. There are mainly two methods to assess this stratification, but they yield different magnetic gradients in the photospheric layers. Determinations based on the several spectral lines of different formation heights and the slope of their profiles result in gradients of ?2 to ?3 G?km?1, or even steeper. This is similar for the total magnetic field strength and for the vertical component of the magnetic field. The other option is to determine the horizontal partial derivatives of the magnetic field, and with the condition \(\operatorname{div} {{\boldsymbol {B}}} = 0\) also the vertical derivative is known. With this method, gradients of ?0.5 G?km?1 and even shallower are obtained. Obviously, these results do not agree. If chromospheric spectral lines are included, only shallow gradients around ?0.5 G?km?1 are obtained. Shallow gradients are also found from gyro-resonance measurements in the radio wave range 300?–?2000 GHz.Some indirect methods are also considered, but they cannot clarify the total picture. An analysis of a numerical simulation of a sunspot indicates a shallow gradient over a wide height range, but with slightly steeper gradients in deep layers.Several ideas to explain the discrepancy are also discussed. With no doubts cast on Maxwell’s equations, the first one is to look at the uncertainties of the formation heights of spectral lines, but a wider range of these heights would require an extension of the solar photosphere that is incompatible with observations and the theory of stellar atmospheres. Submerging and rising magnetic flux might play a role in the outer penumbra, if the resolution is too low to separate them, but it is not likely that this effect acts also in the umbra. A quick investigation assuming a spatial small scale structure of sunspots together with twist and writhe of individual flux tubes shows a reduction of the measured magnetic field strength for spectral lines sensitive to a larger height range. However, sophisticated investigations are required to prove that the explanation for the discrepancy lies here, and the problem of the height gradient of the magnetic field in sunspots is still not solved.  相似文献   
105.
In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10 m (frequencies below 30 MHz), remains the last virtually unexplored window of the celestial electromagnetic spectrum. The strength of the science case for extending radio astronomy into the ULW window is growing. However, the opaqueness of the Earth’s ionosphere makes ULW observations by ground-based facilities practically impossible. Furthermore, the ULW spectrum is full of anthropogenic radio frequency interference (RFI). The only radical solution for both problems is in placing an ULW astronomy facility in space. We present a concept of a key element of a space-borne ULW array facility, an antenna that addresses radio astronomical specifications. A tripole–type antenna and amplifier are analysed as a solution for ULW implementation. A receiver system with a low power dissipation is discussed as well. The active antenna is optimized to operate at the noise level defined by the celestial emission in the frequency band 1 ? 30 MHz. Field experiments with a prototype tripole antenna enabled estimates of the system noise temperature. They indicated that the proposed concept meets the requirements of a space-borne ULW array facility.  相似文献   
106.
This paper develops a nonlinear analytic solution for satellite relative motion in J2-perturbed elliptic orbits by using the geometric method that can avoid directly solving the complex differential equations. The differential equinoctial elements (DEEs) are used to remove any singularities for zero-eccentricity or zero-inclination orbits. Based on the relationship between the relative states and the DEEs, state transition tensors (STTs) for transforming the osculating DEEs and propagating the mean DEEs have been derived. The formulation of these STTs has been split into a set of vector and matrix operations, which avoids directly expanding the complex second-order terms, and thus, the obtained STTs could be easy-to-understand and easy-to-code. Numerical results show that the proposed nonlinear solution is valid for zero-eccentricity and zero-inclination reference orbit and is more accurate than the previous linear or nonlinear methods for the long-term prediction of satellite relative motion.  相似文献   
107.
In Eastern South America, high altitude grasslands represent a mountain system that has a high number of endemic species. However, studies on the ecology of plant communities in these environments remain scarce. We aimed to evaluate the patterns of biodiversity and structure of plant communities from rocky outcrops in high altitude grasslands of three areas at the Caparaó National Park, southeastern Brazil, by sampling 300 randomly distributed plots. Then, we compared the floristic composition, relative abundance, and biological and vegetation spectra among areas. We classified species as endemic and non-endemic and verified the occurrence of endangered species. Species richness was evaluated by rarefaction analysis on the sampling units. The importance value and species abundance distribution (SAD) models were assessed. We also performed an indicator species analysis. We sampled 58 species belonging to 49 genera and 32 families. The number of species decreased with increasing altitude, with significant differences being observed among areas regarding richness, abundance, and cover. Of the total number of species, 10 are endemic to the Caparaó National Park and 17 are listed on the Brazilian Red List of endangered species. The dominant families on all peaks were Asteraceae and Poaceae. The SAD models showed lognormal and geometric distributions, corroborating the fact that 10 species that were common to all three areas were also the most dominant ones in the communities and showed the highest importance values, which ranged between 35% and 60%. Indicator species analysis revealed that 28 species (48.27%) were indicators. Of these, 42.85% had maximum specificity, meaning that they occurred only in one area. Thus, the number of species per life form ratio was similar among areas, yet vegetation spectra differed, especially for hemicryptophytes. The altimetric difference among the areas showed to be a very important driver in the community assembly, influencing the evaluated variables, however, other drivers as soil depth, slope and water could also influence the community structure on a smaller and local spatial scale.  相似文献   
108.
This is a crucial time in the history of astronomy with major all-sky surveying work being carried out in all spectral bands, as well as in astrometry. The results of this activity are advancing all fields of astrophysical research, from the investigation of exo-planetary systems to the study of the chemical evolution of the Universe. Full sky surveys are available from the radio domain to X-ray wavelengths but not in the ultraviolet range (UV). While large UV missions are currently under discussion within the astrophysical community and at the major Space Agencies, the efficient use of resources requires preparatory work that can fill the UV surveying gap. This article summarizes the research and on-going activities in this field.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号